Skip to main content

Posts

Showing posts from August, 2016

Abstract paintings with velocity fields

The following images show a graphical representation of the flow of velocity fields. In them you can observe the behavior of particles moving with respect to the velocity field. I made these images with the program GeoGebra and I used filters from Snapseed.
$\mathbf v=(x-y,x+y)$
$\mathbf v=\left(-\dfrac{y}{x^2+y^2},\dfrac{x}{x^2+y^2}\right)$
$\mathbf v=(x,-y)$
Guess who is $\mathbf v$
$\mathbf v=(-x+xy-x^2,-xy+y)$
$\mathbf v=\left(\dfrac32\cos y,\dfrac32\,\text{sen } x\right)$
$\mathbf v=(x^2-y^2,2xy)$
$\mathbf v=\left(\dfrac32\cos y,\dfrac32\text{sen} x-y\right)$
$\mathbf v=\left(-1-\dfrac{x}{(x^2+y^2)^{3/4}},-1-\dfrac{y}{(x^2+y^2)^{3/4}}\right)$
If you have time to observe the behavior of the flow defined by the velocity field and want to make abstract paintings, then click the image below or on the link.
https://www.geogebra.org/m/JPUBhFgs