Skip to main content


Showing posts from August, 2016

Abstract paintings with velocity fields

The following images show a graphical representation of the flow of velocity fields. In them you can observe the behavior of particles moving with respect to the velocity field. I made these images with the program GeoGebra and I used filters from Snapseed.
$\mathbf v=(x-y,x+y)$
$\mathbf v=\left(-\dfrac{y}{x^2+y^2},\dfrac{x}{x^2+y^2}\right)$
$\mathbf v=(x,-y)$
Guess who is $\mathbf v$
$\mathbf v=(-x+xy-x^2,-xy+y)$
$\mathbf v=\left(\dfrac32\cos y,\dfrac32\,\text{sen } x\right)$
$\mathbf v=(x^2-y^2,2xy)$
$\mathbf v=\left(\dfrac32\cos y,\dfrac32\text{sen} x-y\right)$
$\mathbf v=\left(-1-\dfrac{x}{(x^2+y^2)^{3/4}},-1-\dfrac{y}{(x^2+y^2)^{3/4}}\right)$
If you have time to observe the behavior of the flow defined by the velocity field and want to make abstract paintings, then click the image below or on the link.