Posts

Showing posts from February, 2015

Roots of complex numbers

Consider $z=a+ib$ a nonzero complex number. The number $z$ can be written in polar form as
$z=r(\cos \theta +i \sin \theta)$
where $r=\sqrt{a^2+b^2}$ and $\theta$ is the angle, in radians, from the positive $x$-axis to the ray connecting the origin to the point $z$.

Now, de Moivre's formula establishes that if $z=r(\cos \theta +i\sin \theta)$ and $n$ is a positive integer, then
$z^n=r^n(\cos n\theta+i\sin n\theta).$
Let $w$ be a complex number. Using de Moivre's formula will help us to solve the equation $z^n=w$ for $z$ when $w$ is given. Suppose that $w=r(\cos \theta +i\sin \theta)$ and $z=\rho (\cos \psi +i\sin \psi)$. Then de Moivre's formula gives $z^n=\rho^n(\cos n\psi+i\sin n\psi)$. It follows that $\rho^n=r=|w|$ by uniqueness of the polar representation and $n\psi = \theta +k(2\pi)$, where $k$ is some integer. Thus
$z=\sqrt[n]{r}\left[\cos\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right)+i\sin\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right) \right]$
Each value of \$k=…