### Relative velocity: Boat problems

Problem 1.

A river  flows due East at a speed of 1.3 metres per second. A girl in a rowing boat, who can row at 0.4 metres per second in still water, starts from a point on the South bank and steers due North. The boat is also blown by a wind with speed 0.6 metres per second from a direction of N20ºE.

 Figure 1: The red arrows represent the velocities of the boat (b), wind (w) and flow (r).

1. Find the resultant velocity of the boat and its magnitude.
2. If the river has a constant width of 10 metres, how long does it take the girl to cross the river, and how far upstream or downstream has she then travelled?

Problem 2.

A river  flows due West at a speed of 2.5 metres per second and has a constant width of 1 km. You want to cross the river from point A (South) to a point B (North) directly opposite with a motor boat that can manage to a speed of  5 metres per second.

1. If you head out pointing your boat at an angle of 90 degrees to the bank. How long does it take to get from point A to point B?
2. After crossing the river you realised that it took  longer than expected. In what direction should you point you motor boat in order to reduce the time to cross the river? How long will it take you to get from point A to point B? Is it a better time?

Applet GeoGebra

The following applet shows a representation of the problem 2, considering that the boat starts from a point A. It also shows the velocities (vectors) and their magnitudes (speeds) of the boat and current.

1. Move the sliders to change the magnitude and direction of vectors.
2. Click the 'Start' button to activate the motion of the boat.
3. Click the 'Reset' button to put back the boat to its original position.
4. You can also change the width of the river. Chose a number between 5 and 1000.
5. All velocities can be considered either as metres per second or km per second.

Open this applet in an external window: Relative Velocity: Boat Problem

### More

Cálculo Diferencial: Método para encontrar la velocidad de un movimiento cuando se conoce la distancia recorrida en un tiempo dado.
Cálculo Integral: Método para encontrar la distancia recorrida cuando se conoce la velocidad.
Intuitivamente:
Para encontrar la distancia recorrida de un objeto, cuando se conoce la velocidad, se recurre al cálculo integral, es decir, se debe calcular el área bajo la curva que representa la dependencia de la velocidad respecto del tiempo.
Para encontrar la velocidad de un movimiento cuando se conoce la distancia recorrida en un tiempo dado, se recurre al cálculo diferencial, es decir, se debe calcular la derivada de la curva que representa la dependencia de la distancia respecto del tiempo.
El problema de la integración es recíproco al problema de derivación y viceversa.
- Al integrar, función velocidad, se calcula distancia. - Al derivar, función distancia, se calcula velocidad
Applets de Geogebra
Representación del movimiento. En estos applets pueden modificar…

### El fracaso de la matemática moderna de Morris Kline

'El fracaso de la matemática moderna', o bien '¿Por qué Juanito no sabe sumar?', es un libro escrito por el matemático estadounidense Morris Kline y publicado en 1973 (El título original en inglés es: Why Johnny can't add: The failure of the New Mathematics).  Kline realiza una crítica de la educación de la matemática moderna en los años 70.

Gracias al esfuerzo de Juan Pablo Cárdenas Gutiérrez, ahora pueden tener acceso al libro de Morris Kline en versión digital (pdf).

Nota importante:Los libros digitales de este Blog son para fines educativos. Este libro es difícil de conseguir en México y por esa razón lo he subido aquí, para compartirlo y utilizarlo en discusiones acerca de la enseñanza de las matemáticas. Si tienen la oportunidad de adquirirlo, no lo duden, pues considero que es un excelente libro.

En el siguiente link pueden encontrar una versión libre en inglés: Why Johnny can't add

Sinopsis:

### Representaciones en 3D: Espiral y curva paramétrica de pi

Otro uso de proyecciones ortográficas con Geogebra.

1. Curva paramétrica para representar a $\pi$
Para generar la curva que representa a $\pi$ se requiere utilizar una ecuación paramétrica.

En matemáticas, una ecuación paramétrica permite representar una o varias curvas o superficies en el plano o en el espacio, mediante valores arbitrarios o mediante una constante, llamada parámetro, en lugar de mediante una variable independiente de cuyos valores se desprenden los de la variable dependiente.
Por ejemplo: Dada la ecuación $y = x^2$, una parametrización tendrá la forma $$\begin{cases} x = u (t) \\ y = v (t) \end{cases}$$
Una parametrización posible sería $$\begin{cases} x = t \\ y = t^2 \end{cases}$$
Una circunferencia con centro en el origen de coordenadas y radio $r$ verifica que $x^2 + y^2 =r^2$.
Una expresión paramétrica de la circunferencia es $\begin{cases} x = r \cos t \\ y = r \sin t \end{cases}$
1.1 Curva $\pi$:
En nuestro caso, para generar la curva $\pi$, es necesario defini…