Skip to main content

Developing prospective mathematics teachers in Mexico: a lesson on the relationship between integration and differentiation

Mexican authorities and universities are actively working to improve mathematics teaching and learning across the education system. Thus, efforts are underway to raise the historically low performance in mathematics, which include theoretically grounded pedagogy and curriculum development to raise mathematical knowledge in teacher education programmes. The purpose of this article is twofold. Firstly, I give an overview of the educational system in Mexico by outlining the evolution of the mathematics curriculum and teacher preparation programmes. Secondly, I describe and discuss, from my own practice, a lesson using dynamic tools for helping prospective teachers to understand the relationship between integration and differentiation within the context of the current literature from Mexico and abroad. While Mexico faces distinct issues within its educational system, challenges in how future mathematics teachers understand mathematical content appear universal. Thus, teaching mathematical content while modelling effective mathematical pedagogical practices is of relevance to all of us striving to enhance the quality of future mathematics teachers.
Keywords: research, fundamental theorem of calculus, education, Mexico, dynamic software, GeoGebra

For more details copy and paste in your Web browser the next address: Link IJMEST



Distancia, velocidad y aceleración

Cálculo Diferencial: Método para encontrar la velocidad de un movimiento cuando se conoce la distancia recorrida en un tiempo dado.
Cálculo Integral: Método para encontrar la distancia recorrida cuando se conoce la velocidad.
Para encontrar la distancia recorrida de un objeto, cuando se conoce la velocidad, se recurre al cálculo integral, es decir, se debe calcular el área bajo la curva que representa la dependencia de la velocidad respecto del tiempo.
Para encontrar la velocidad de un movimiento cuando se conoce la distancia recorrida en un tiempo dado, se recurre al cálculo diferencial, es decir, se debe calcular la derivada de la curva que representa la dependencia de la distancia respecto del tiempo.
El problema de la integración es recíproco al problema de derivación y viceversa.
- Al integrar, función velocidad, se calcula distancia. - Al derivar, función distancia, se calcula velocidad
Applets de Geogebra 
Representación del movimiento. En estos applets pueden modificar…

Representaciones en 3D: Espiral y curva paramétrica de pi

Otro uso de proyecciones ortográficas con Geogebra.

1. Curva paramétrica para representar a $\pi$
Para generar la curva que representa a $\pi$ se requiere utilizar una ecuación paramétrica.

En matemáticas, una ecuación paramétrica permite representar una o varias curvas o superficies en el plano o en el espacio, mediante valores arbitrarios o mediante una constante, llamada parámetro, en lugar de mediante una variable independiente de cuyos valores se desprenden los de la variable dependiente.
Por ejemplo: Dada la ecuación $y = x^2$, una parametrización tendrá la forma $$\begin{cases} x = u (t) \\ y = v (t) \end{cases}$$
Una parametrización posible sería $$\begin{cases} x = t \\ y = t^2 \end{cases}$$
Una circunferencia con centro en el origen de coordenadas y radio $r$ verifica que $x^2 + y^2 =r^2$.
Una expresión paramétrica de la circunferencia es $\begin{cases} x = r \cos t  \\ y = r \sin t \end{cases}$
1.1 Curva $\pi$:
En nuestro caso, para generar la curva $\pi$, es necesario defini…

Möbius transformations with stereographic projections

A Möbius transformation of the plane is a rational function of the form $$f(z) = \frac{a z + b}{c z + d}$$ of one complex variable $z$. Here the coefficients $a, b, c, d$ are complex numbers satisfying $ad - bc\neq 0.$
Geometrically, a Möbius transformation can be obtained by stereographic projection of the complex plane onto an admissible sphere in $\mathbb R^3$, followed by a rigid motion of the sphere in $\mathbb R^3$ which maps it to another admissible sphere, followed by stereographic projection back to the plane. 

A Möbius transformation is a combination of dilatation, inversion, translation, and rotation.
The following applet shows the stereographic projection representing different Möbius transformations. Move the sliders to see what happens.

Made with GeoGebra, link here: This applet was made based on the work of D. N. Arnold and J. Rogness.
Further reading:
Arnold, D. N. & Rogness, J. (2008).  Möbius transformations revea…